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Abstract
This article compares the performance of traditional and recently proposed demodulators for multifrequency atomic force micros-
copy. The compared methods include the lock-in amplifier, coherent demodulator, Kalman filter, Lyapunov filter, and direct-design
demodulator. Each method is implemented on a field-programmable gate array (FPGA) with a sampling rate of 1.5 MHz. The
metrics for comparison include the sensitivity to other frequency components and the magnitude of demodulation artifacts for a
range of demodulator bandwidths. Performance differences are demonstrated through higher harmonic atomic force microscopy
imaging.
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Introduction
Atomic force microscopy (AFM) [1] has enabled innovation in
nanoscale engineering since it was invented in 1986 by Binnig
and co-workers. Atomic-scale topographical resolution is
achieved by sensing the interaction between a sharp microcan-
tilever probe and the sample [2]. Initial operation was in con-
stant-force contact-mode, where a static deflection is main-
tained through a constant contact force [3].

In dynamic imaging modes [4], the cantilever is driven at, or
near, a resonance frequency, which establishes the requirement
for demodulation in AFM. In intermittent-contact constant-

amplitude AFM [5], a constant cantilever oscillation amplitude
is maintained by feeding back the demodulated fundamental
amplitude of the deflection signal. The imaging of delicate bio-
logical samples [6-8] is particularly suited to intermittent-con-
tact AFM [9] when tip–sample contact is gentle.

Environmental damping has a large effect on the quality factor
(Q) of the cantilever. Values can range from as low as Q ≈ 1 in
liquid [10], up to Q ≈ 10,000 in ultra-high vacuum [11]. This
affects the mechanical bandwidth of the cantilever according to
the expression f−3dB = f0/2Q, where f0 is the fundamental reso-
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nance frequency. Assuming all other components in the z-axis
feedback loop are also working at high speed [3], a low quality
factor can demand a fast demodulator [12].

Multifrequency AFM (MF-AFM) is a major field within
dynamic mode AFM. It involves studying multiple frequency
components in the cantilever oscillation during tip–sample
interactions [13]. Observing higher eigenmodes of the cantile-
ver [14], higher harmonics of the fundamental resonance [15]
and intermodulation products [16] have been shown to provide
further nanomechanical sample information. These include
properties such as sample elasticity, stiffness and adhesiveness
[17], which are mapped simultaneously with the topography.
Acquiring these observables requires the accurate demodula-
tion of amplitude and phase of multiple frequency components.

Small interaction forces associated with higher-harmonic AFM
have been imaged in free air [18] as well as liquid [19]. This
has lead to relatively large biological objects being imaged in-
cluding viruses [20] and cells [21]. Multimodal AFM, where
two or more resonance frequencies are driven, has theoretical
foundations for determining secondary sample properties such
as Young’s modulus [13,22]. Applications include the imaging
of secondary properties of proteins [23] and polymers [24].
Intermodulation AFM actively drives the cantilever slightly
below and above resonance with a two-tone drive. Compared to
higher-harmonic AFM, this technique has more enhanced non-
linear interactions [25]. Intermodulation products present in the
cantilevers motion have been shown to be sensitive to material
and chemical contrast [16,26], leading to enhanced nanome-
chanical insights [27]. Regardless of which MF-AFM tech-
nique is performed, the demodulator is an essential component
for acquiring observables to characterize the sample.

Previously, the authors conducted an in-depth comparison of
conventional and novel demodulation techniques for single-fre-
quency amplitude-modulation atomic force microscopy [28]. It
was found that conventional high-speed non-synchronous
demodulators are incompatible with MF-AFM, due to the lack
of robustness against unwanted frequency components [28].
These include the peak-hold [12], peak detector [29] and RMS-
to-DC [30] conversion demodulators. In contrast, synchronous
demodulators have been shown to provide accurate estimates in
the presence of other frequency components [28]. As a result,
MF-AFM experiments usually employ multiple lock-in ampli-
fiers in parallel. However, this introduces an inherent band-
width limitation as high-frequency mixing products must be
low-pass filtered [28,31].

Motivated by improving high-speed MF-AFM demodulation
capabilities, a multifrequency Kalman filter was developed

[32]. It outperformed a commercially available lock-in ampli-
fier in terms of both tracking bandwidth and noise performance.
However, a major disadvantage of the Kalman filter is its
implementation complexity. This heavily limits the achievable
sampling rate and ability to track a large number of signals. To
alleviate this issue, the Lyapunov filter [33] was established,
which is computationally more efficient than the Kalman filter
while achieving similar performance [34]. This was extended to
a multifrequency Lyapunov filter, which has seen success in
higher-harmonic AFM for both amplitude and phase-contrast
imaging [35,36]. A limitation, common to both the Kalman and
the Lyapunov filter, is a fixed 1st-order response, which has
motivated the development of techniques for the direct design
of the demodulator frequency response [37,38].

This article aims to provide a rigorous experimental compari-
son of MF-AFM demodulation techniques. This includes the
conventional lock-in amplifier and coherent demodulator, as
well as the recently proposed Kalman filter, Lyapunov filter and
direct-design method. For a fair comparison, each system is
implemented on the same FPGA platform with a common sam-
ple rate. The sensitivity to unwanted frequency components for
both low and high bandwidths is assessed along with implemen-
tation complexity. A final experimental comparison is con-
ducted through higher-harmonic AFM imaging for both low
and high tracking bandwidths.

Multifrequency AFM Modulation and
Demodulation Fundamentals
Cantilever deflection signal model
A single component of the cantilever deflection signal is
modeled as a sine wave with carrier frequency fi, time-varying
amplitude Ai(t) and phase ϕi(t), that is of the form

(1)

For a better readability, explicit time-dependencies on the
amplitude A(t) and phase ϕ(t) are dropped from this point
onward. By extension, a deflection signal consisting of multiple
frequencies is given by

(2)

where i = 1, 2, …, n denotes the i-th modeled frequency. An al-
ternative representation of a single signal component is of the
linearly parameterized form
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(3)

where x2i−1 and x2i represent quadrature and in-phase compo-
nents respectively. This is convenient for MF-AFM, as the
time-varying amplitude and phase of each frequency can be
recovered by the output equations

(4)

Modulation
An amplitude-modulated signal (double-sideband full carrier) is
obtained by mixing a modulating signal ym(t) at a frequency
ωm = 2πfm with a carrier signal yi(t). The modulating signal
oscillates at a frequency that is significantly slower than the
carrier frequency ωi. Figure 1a illustrates a cantilever driven at
multiple frequencies being amplitude-modulated by a sample
topography. In MF-AFM, the cantilever deflection signal
contains frequency components originating from the funda-
mental resonance mode, as well as from higher eigenmodes
and/or harmonics. If for simplicity we assume unity amplitudes,
then amplitude-modulation of a distinct frequency component at
ωi is described by

(5)

Here, M is the modulation index, which for AM signals is the
ratio of the peak value of the modulated signal relative to the
carrier. Equation 5 shows that the modulation process creates
distinct frequencies components at fi and fi ± fm. The latter com-
ponents are termed the upper and lower sidebands and are
centered symmetrically around the carrier frequency as illus-
trated in Figure 1b. As the modulating frequency increases, the
sidebands move away from the carrier up until the limit where
the left sideband is at DC and the right sideband is at 2fi. The
scenario where fm > fi is not of practical interest, as the ampli-
tude changes would need to be faster than the cantilever oscilla-
tion frequency.

Demodulation
Demodulation is the process of estimating the modulating
signal (sample) associated with a carrier frequency. Demodula-
tors can be classified as either synchronous or non-synchronous.
Non-synchronous methods do not require a reference oscillator.

Figure 1: (a) Schematic diagram of sample topography amplitude-
modulating a cantilever the oscillation of which consists of multiple
frequencies. (b) Double-sided amplitude frequency spectrum of a can-
tilever oscillating at multiple frequencies Σyi(t) while being amplitude-
modulated by the sample topography ym(t).

However, these methods are incompatible with MF-AFM, due
to their inability to reject unwanted frequency components [28].
For this reason, these techniques are not discussed in this
article. Synchronous demodulation techniques employ a refer-
ence oscillator and can be categorized as either open-loop or
closed-loop, depending on whether they use feedback to esti-
mate parameters. Open-loop demodulators include the lock-in
amplifier and coherent demodulator, while closed-loop methods
include the Kalman filter, Lyapunov filter, and direct-design
demodulator.

Performance metrics
In a previous work [28], the performance of single-frequency
AFM demodulators was assessed by measuring the magnitude
of demodulation artifacts and the sensitivity to measurement
noise. However, multifrequency AFM applications require an
additional metric due to the large number of potentially closely
spaced frequencies. For example, higher-harmonic imaging
with single-frequency excitation results in small harmonic
amplitudes that must be estimated in the presence of both noise
and much larger fundamental and/or harmonic components
[19,36]. The performance of the demodulator in this regard can
be quantified by a metric herein referred to as the off-mode
rejection (OMR).

OMR is defined as the gain ratio between a modeled carrier fre-
quency fi and another frequency fj as visualized in Figure 2. It
can be evaluated by
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(6)

where G(2πf) is the demodulator frequency response. Addition-
ally, implementation complexity is qualitatively discussed. It is
assessed according to the maximum achievable sampling rate,
timing requirements and computational scalability when
modeling additional channels.

Figure 2: Visualization of off-mode rejection in the frequency domain
for a demodulator magnitude frequency response |G(2πf)| at fi with
respect to fj.

Review of Multifrequency
Demodulation Methods
Lock-in amplifier
The multifrequency lock-in amplifier (LIA) [28,39-41] oper-
ates by multiplying an input signal described by Equation 2
with parallel in-phase and quadrature sinusoids tuned to
frequencies the amplitude and phase of which are of interest.
For simplicity, consider an ideal input signal consisting of a
single sinusoid with a frequency ωi, applied to a lock-in ampli-
fier tuned to ωi. During the mixing process, the following inter-
mediate signals are generated

(7)

and

(8)

From Equation 7 and Equation 8 it can be seen that in addition
to the desired amplitude and phase, mixing products are gener-
ated at twice the carrier frequency 2ωi. If the input contains
more than one sinusoid and/or a noise process, further unde-

sired frequency components are present in the intermediate
signals. These high-frequency mixing components and noise
terms are removed by employing a low-pass filter, the cut-off
frequency of which is determined by making a trade-off be-
tween tracking bandwidth and 2ωi ripple suppression [28]. Ad-
ditionally, lock-in amplifiers should always be AC-coupled as
any residual DC offset in the input signal (Equation 2) will
generate a mixing component at ωi.

The functional block diagram of the multifrequency lock-in
amplifier is shown in Figure 3. Here, it can be seen that
multiple frequencies are tracked by running several lock-in
amplifiers in parallel, with each oscillator tuned to a specific
frequency ωi. The required components for digital implementa-
tion of each lock-in amplifier are a direct digital synthesizer
(DDS) to generate the sine and cosine mixing signals, two
multipliers, two low-pass filters and an output block. The output
block, which calculates amplitude and phase, is described by
Equation 4, meaning the square-root and arctan functions are
required. Typically the phase is calculated by using either a
polynomial approximation [42] or the CORDIC algorithm [43].

Figure 3: Functional block diagram of the multifrequency lock-in ampli-
fier implementation. The zoom-box displays the functional block
diagram of a single lock-in amplifier.

Coherent demodulator
The multifrequency coherent demodulator is a digital demodu-
lation method based on mixing and precise integration over a
fixed time window [28,44-47]. Conceptually, it is a digital lock-
in amplifier that utilizes mixing with in-phase and quadrature
sinusoids
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Figure 4: Functional block diagram of the multifrequency coherent
demodulator implementation. The zoom-box displays the functional
block diagram of a single coherent demodulator.

(9)

and implements low-pass filtering of mixing products and any
other additional unwanted frequency components through
precise fixed-length numerical integration [45]. If the input
signal is a pure sinusoid (Equation 1) and the integration period
T is chosen to be an integer multiple of the drive signal period,
T = mTi, the integrals over yI(t) and yQ(t) evaluate exactly to the
in-phase and quadrature states

(10)

The functional block diagram of the multifrequency coherent
demodulator is shown in Figure 4. It requires the same compo-
nents as the lock-in amplifier, although the method in which the
low-pass filter is implemented is different. Advanced imple-
mentation details can be found in the literature [28,45].
Practitioners should pay strong attention to timing considera-
tions, otherwise the desired low-pass filtering effect will not
occur.

For Equation 10 to hold, the integration period must be an
integer multiple of the sampling period, nTs = mTi, where n is
the number of samples in the integration. Since an arbitrary
sample-to-carrier frequency ratio Fs/fi is rarely an integer, this
condition is hard to meet. Therefore, a practical solution is to
find the smallest n such that nTs ≤ mTi ≤ (n + 1)Ts and perform
a partial integration over the last sampling interval [45]. Such
precise control over the integration period is achievable in
digital systems, although the implementation of this method is
still challenging.

The discrete-time integration in Equation 10 yields a very use-
ful finite impulse response (FIR) filter, the frequency response
of which is a sinc(·) function with zeros occurring at integer
multiples of the oscillation frequency [28]. Unlike the lock-in
amplifier, this allows the coherent demodulator to achieve low-
noise output estimates at high tracking bandwidths since it
strongly rejects 2fi mixing products [28]. In addition, this
zeroing characteristic can provide strong attenuation of
unwanted harmonics and intermodulation products. This has
lead to the multifrequency coherent demodulator being success-
fully applied to intermodulation AFM [26,27].

Kalman filter
The Kalman filter [48] has seen practical application in many
fields including inertial navigation [49], robotics [50], and
economics [51]. The Kalman filter uses a recursive algorithm to
minimize the error between modeled and measured information
to estimate an unknown process variable. Specifically, if the
modeling and measurement noise processes have a Gaussian
distribution, the Kalman filter produces an optimal estimate of a
variable in the least-squares sense by minimizing the variance
[52]. Fundamental to its operating principle, the Kalman filter
utilizes a linear model of system dynamics and feedback of the
state variables to update the Kalman gains, which controls the
tracking bandwidth.

When the time-varying system is discretized for t = kTs, where
Ts is the sampling period, the process model of the Kalman
filter is established as

(11)
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Figure 5: Functional block diagram of the Kalman filter implementa-
tion.

where wk and vk are the process noise and measurement noise
with respective covariance matrices Qk and Rk. The state and
output matrix are described by

(12)

where I2n+1 is the identity matrix of dimension 2n + 1, n is the
number of modeled frequencies, θi,k = ωikTs. In this representa-
tion, quadrature x2i−1,k and in-phase x2i,k states are assumed to
be random variables describing the states of Equation 3.

The parameters Qk and Rk dictate the amount of uncertainty in
the model and the measurement noise, respectively. To simplify
tuning of the filter during operation it is recommended to fix Rk
such that it reflects the standard deviation σ of the Gaussian
noise in the input signal from the sensor y(t) (R = σ2). This
leaves Qk as the only tuning variable that directly influences the
Kalman gains and sets the tracking bandwidth.

The functional block diagram of the Kalman filter implementa-
tion is shown in Figure 5, it follows the standard recursive algo-
rithm equations [53,54]. The prediction step is computed as

(13)

where Pk|k−1 denotes the predicted covariance matrix. This is
followed by the Kalman gain and state measurement updates

(14)

Lastly, the covariance matrix is updated according to

(15)

which is in Joseph form, i.e., it is naturally symmetric and posi-
tive definite. These properties can be exploited in the imple-
mentation to reduce memory and computation requirements. In
addition, it is the most numerically stable form of the covari-
ance matrix and remains convergent and non-deterministic for
any selection of Qk and Rk[53].

Specific amplitude and phase of a modeled frequency ωi are
shown to be recovered by employing the output equations in
Equation 4. Although this method is simple to tune in real-time,
a disadvantage is the fixed 1st-order response. Also, the Kalman
filter equations have a complexity of  for n modeled
frequencies resulting in significant computational requirements
beyond three modeled frequencies. This system representation
has seen success in tracking power system voltage phasors [55]
and more recently high-speed AFM [31,32].

Lyapunov filter
The Lyapunov filter [33,35,36] also uses a model-based feed-
back approach to obtain amplitude and phase of signals at
desired frequencies. Under certain conditions, the Lyapunov
filter has been shown to be equivalent to the Kalman filter [33].
However, the Lyapunov filter uses a tunable scalar gain γ
instead of updating covariance matrix and Kalman gain equa-
tions. This gives the Lyapunov filter a computational complexi-
ty of  as additional frequencies are modeled, a significant
improvement over the Kalman filter.

A key property of the Lyapunov filter is exponential conver-
gence of the estimated states [56], with the tunable loop gain γ
governing the speed of convergence. The multifrequency
Lyapunov filter is implemented as parallel linear observers
tuned to a particular frequency ωi, as depicted in Figure 6. An
error signal is generated by feeding back an estimate of the
input signal as per Equation 2, obtained from the parameterized
states of each individual filter. Regulation of this error through
feedback leads to the much desired suppression of the high-fre-
quency mixing components.

The update law for the Lyapunov filter [33,36] for multiple
frequencies is written as

(16)



Beilstein J. Nanotechnol. 2020, 11, 76–91.

82

Figure 6: Functional block diagram of the multifrequency Lyapunov
filter implementation. The zoom-box displays the functional block
diagram of a single Lyapunov filter.

where

(17)

and

(18)

In this form,  represents the estimated input signal and the
amplitude Ai and phase ϕi estimates are found by applying
Equation 4 to each quadrature and in-phase pair of . A key
property to ensure exponential convergence of  to x is to guar-
antee that C is persistently excited [56]. Convergence is shown
for the single-frequency filter in [33] and can easily be extend-
ed for the multifrequency case. Furthermore, exponential
convergence of  means that  and  also converge. This
system representation has been shown to perform similarly to
the Kalman filter [28], which is advantageous given its imple-

Figure 7: Functional block diagram of the multifrequency direct-design
filter implementation. The zoom-box displays the functional block
diagram of a single direct-design filter.

mentation simplicity. Recently, it has been used for higher-
harmonic AFM for both amplitude and phase-contrast imaging
[35,36].

Direct-design method
The direct-design method [37] also utilizes model-based feed-
back to obtain the amplitude and phase of signals at desired
frequencies. However, intrinsic to its design methodology is the
ability to implement an arbitrary filter response with a speci-
fied filter order and linearity in the bandpass region. For exam-
ple, a demodulator can be implemented the frequency response
of which resembles a Butterworth or Chebyshev filter with a
desired filter bandwidth and order. This alleviates the limited
1st-order response of the Kalman and Lyapunov filters, creating
stronger rejection of unwanted frequency components. This
occurs while maintaining benefits such as low noise and low
computational complexity.

In order to obtain an arbitrary demodulator response, consider
the functional block diagram in Figure 7, where the integrator
of the Lyapunov filter is replaced by the transfer function F(s).
In this form, the direct-design demodulator follows a modu-
lated–demodulated control loop [57] with a unity plant. This
method differs from the Lyapunov filter as it does not set the
pre-filter to W(s) = 1, instead it utilizes W(s) as part of the
design of a desired closed-loop response. In the original work
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Table 1: Summary of multifrequency demodulation estimation methods.

method tuning configuration order references

lock-in amplifier low-pass filter open-loop specified n [28,39-41]
coherent demodulator number of hold cycles open-loop specified n [28,44-47,58]
Kalman filter Qk closed-loop 1st [28,31,32,48,53]
Lyapunov filter Γ closed-loop 1st [28,33,35,36,59]
direct-design method desired poles closed-loop specified n [37,38]

[37] on the direct-design method, a useful and relatively simple
design methodology is detailed. Firstly, F(s) is set as

(19)

meaning the closed-loop equivalent transfer function is

(20)

The pre-filter W(s) = P(s)/L(s) is then found according to the
pole-assignment equation

(21)

to achieve a specified closed-loop response.

For example, to implement a 2nd-order bandpass Butterworth
prototype, the closed-loop transfer function is

(22)

Here, b2 and Ai are the filter coefficients the values of which are
calculated based on the chosen filter order and bandwidth
around the modeled frequency ωi. As the desired closed-loop
polynomial has five coefficients, the coefficients of the pre-
filter W(s) are of the form

(23)

and are able to be obtained by solving Equation 21.

The existing literature on direct-design demodulation tech-
niques [37,38] is concerned with single-frequency applications.

However, this article demonstrates the performance advantages
that can also be achieved in multifrequency applications.

Summary
Table 1 compares the multifrequency demodulation techniques
discussed in this section. Two distinct categories of synchro-
nous demodulators can be seen; those that employ low-pass
filtering of mixing products in open-loop configurations and
those that use closed-loop model-based feedback to regulate the
error. As shown in a previous work [28], the closed-loop
methods are able to maintain very high tracking bandwidths,
achieving single-cycle convergence (f−3dB ≈ fi) with optimal
noise performance.

Results and Discussion
Experimental setup
The multifrequency demodulation techniques detailed in the
previous section were implemented on a Xilinx Kintex-7
KC705 evaluation board (model: XC7K325T) paired with a
DC-coupled high-speed 4DSP input/output (I/O) card (model:
FMC151). The FPGA clock is synchronized with the
high-speed I/O card at 240 MHz. The I/O card has a two-
channel 14-bit analog-to-digital converter (ADC) and a
two-channel 16-bit digital-to-analog converter (DAC), which
sample at 250 MHz and 800 MHz, respectively. All demodula-
tion methods were run at a nominal sampling frequency of
Fs = 1.5 MHz.

Implementation
Because of the high complexity, the sampling rate off the
Kalman filter implementation was set to Fs = 1.5 MHz, which
was the maximum achievable for three modeled frequencies
employing floating point precision to ensure covariance
matrix stability and a computationally optimized implementa-
tion [32].

The Lyapunov filter and direct-design method achieve sampling
rates of Fs = 7 MHz for three modeled frequencies. This is due
to the reduced complexity compared to the Kalman filter,
floating point precision was also used to implement these
methods.
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Table 2: Channel-to-channel off-mode rejection for the f3 = 300 kHz channel.

method Bandwidth 0.1%fi Bandwidth 1%fi Bandwidth 10%fi Bandwidth 50%fi

(dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)

lock-in amplifier −43.8 −44.0 −42.2 −42.8 −39.5 −29.0 −14.2 −3.1
coherent demodulator −45.6 −46.3 −40.5 −40.0 −36.4 −27.8 −14.3 −4.6
Kalman filter −44.0 −44.1 −53.0 −52.1 −47.8 −49.7 −42.6 −47.0
Lyapunov filter −41.7 −40.5 −52.8 −53.1 −44.8 −46.2 −46.1 −47.4
direct-design method −41.6 −46.7 −42.3 −43.5 −47.2 −46.0 −51.7 −52.3

The open-loop methods include the lock-in amplifier and
coherent demodulator, which are able to achieve Fs = 120 MHz
for three modeled frequencies. In contrast to the closed-loop
methods, the open-loop methods are compatible with pipelined
fixed-point implementation, which results in significantly in-
creased maximum sampling rates and reduced FPGA resource
usage. A large number of modeled frequencies are possible.

In addition to processing requirements, the implementation
complexity may also be increased by timing requirements. For
example, the fixed-length numerical integration of the coherent
demodulator results in sinc(·) frequency responses the zeros of
which are related to Fs/fi. This results in a limited number of
possible high-bandwidth configurations. At low bandwidths,
there is much more flexibility in achieving a desired bandwidth
as the (N + 1)-FIR filter is longer. Here, the group delay (N/2)
introduced should be considered with respect to the phase
margin of the z-axis feedback loop.

Off-mode rejection
Each multifrequency demodulator was assessed by applying a
single-tone sine sweep of the carrier frequency ωi on an input
signal described by Equation 1. For each demodulator, an
amplitude magnitude frequency response of all three channels
was recorded as the input carrier frequency was swept from DC
to 750 kHz with a constant amplitude A i .  The three
channels were configured to model carrier frequencies of 50,
150, and 300 kHz. In this experiment, the noise floor is dictated
by a residual DC offset, which is present due to the finite reso-
lution of the DAC. However, as each demodulation technique
was analyzed by using the same hardware, the relative
OMR differences are a good indication of each methods perfor-
mance.

The open-loop methods have the benefit of being easily config-
ured to a desired filter order. For this experiment they are of
4th order, which for low-bandwidth settings in Figure 8 creates
very steep roll-offs for the lock-in amplifier (Figure 8a,b) and
coherent demodulator (Figure 8e,f). When compared to the

fixed 1st-order Kalman filter (Figure 8i,j) and Lyapunov filter
(Figure 8m,n), the open-loop methods achieve stronger attenua-
tion around the modeled carrier frequency.

The difference between the lock-in amplifier and coherent
demodulator is the method used to employ the low-pass filter
for suppressing mixing products. In this experiment, the lock-in
amplifier utilizes a Butterworth filter, which generates a maxi-
mally flat frequency response around the modeled carrier fre-
quency. Conversely, the coherent demodulator employs fixed-
length numerical integration resulting in a sinc(·) envelope in its
frequency response [28]. This leads to strong OMR at regular
intervals at sinc(·) zero locations. However, there is less rejec-
tion in-between zeros compared to the Butterworth response.

In contrast to the open-loop methods, the Kalman and
Lyapunov filters operate in a closed-loop configuration result-
ing in state cross-coupling during feedback. As seen in Figure 8
for the Kalman filter (Figure 8i–l) and the Lyapunov filter
(Figure 8m–p), this leads to each channel zeroing frequency
components corresponding to the other modeled channels. The
direct-design method alleviates the fixed 1st-order frequency
response of the Kalman and Lyapunov filters. In Figure 8, the
direct-design method (Figure 8q–t) performance is shown when
configured to a 2nd-order Butterworth filter. The higher filter
order results in greater suppression of broadband noise and
other frequency components around the modeled carrier fre-
quency when compared to the other closed-loop methods.

Table 2 examines the channel-to-channel OMR performance of
each multifrequency demodulator for the 300 kHz channel. It is
clear that the open-loop demodulators have a significant perfor-
mance decrease as the tracking bandwidth increases. The poor
OMR is caused by insufficient roll-off of each frequency
response with respect to the other modeled frequencies f1 and f2.
This occurs despite the coherent demodulator rejecting its own
2fi mixing products. In contrast, the closed-loop Kalman filter,
Lyapunov filter and direct-design methods benefit from cross-
coupling zeros across all bandwidths allowing them to maintain
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Figure 8: Experimental off-mode rejection results. Here each multifrequency demodulator is on a single row and the tracking bandwidths are adjusted
per column with settings of 0.1%fi, 1%fi, 10%fi and 50%fi. For each system the three modeled carrier frequencies are f1 = 50kHz (blue), f2 = 150 kHz
(red) and f3 = 300 kHz (yellow).

a strong OMR. The ability to precisely resolve the zeros is
limited by the DAC resolution. However, the performance
distinction between open-loop and closed-loop methods is clear.

Time-domain estimation analysis
Amplitude estimation performance of the three-channel multi-
frequency demodulators was investigated when a three-tone
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sinewave was applied as an input signal described by
Equation 2. Here, A1 = 500 mV, A2 = 100 mV, A3 = 50 mV,
f1 = 50 kHz, f2 = 150 kHz, and f3 = 300 kHz. Figure 9 shows the
amplitude estimation error ( ) in the time-domain
and amplitude estimate power spectral density (PSD) for both
low (1%fi) and high (50%fi) tracking bandwidth settings.

When the three-tone sinewave is applied, the performance of
each demodulator at low bandwidths is shown to be similar.
Each channel is able to estimate the amplitude of its modeled
frequency, while strongly attenuating the other frequency com-
ponents present in the input signal.

At high bandwidths, closed-loop demodulators benefit from
cross-coupling zeros at the modeled frequencies. Compared to
the open-loop methods, this results in significantly less estima-
tion error as seen in Figure 9. In Figure Figure 9a, the lock-in
amplifier 50 kHz estimate contains mixing products at
2fi = 100 kHz in the time-domain, shown as distinct peaks in the
PSD. In contrast, the coherent demodulator in Figure 9b
strongly attenuates the mixing products. The performance
difference is due to the Butterworth filter not sufficiently atten-
uating the mixing products, while the sinc(·) envelope contains
a zero at 2fi. However, both open-loop methods poorly estimate
the 150 kHz and 300 kHz input signals at high tracking band-
widths due to weak OMR. The PSD reveals that the large esti-
mation errors consist of intermodulation products, which arise
from the input multiplying stage.

AFM imaging
The lock-in amplifier and Lyapunov filter were compared
through an MF-AFM imaging experiment where they estimate a
signal in the presence of undesirable frequency components.
These demodulators were chosen as they are the most simple
methods to implement in their respective configurations. This
experiment further investigated open-loop and closed-loop
demodulator performance at low and high tracking bandwidths.

When compared to bimodal AFM, higher-harmonic AFM
[15,60] has inherently greater demodulation challenges. Strong
OMR is required as higher harmonics are separated by nf0,
much closer than the approx. 6f0 second eigenmode spacing
[61]. In addition, harmonic content from tip–sample interac-
tions scales with approx. 1/n2[13]. Therefore, the signals of
interest are detected in the presence of a much larger funda-
mental resonance frequency, emphasizing the need for strong
noise sensitivity from the demodulator.

Higher-harmonic AFM imaging was performed using an
NT-MDT NTEGRA AFM on the second harmonic amplitude.
The chosen cantilever (Budget Sensor TAP190G) has a funda-

mental resonance frequency of 156.75 kHz. The sample is a
blend of polystyrene (PS) and polyolefin elastomer (LDPE)
available from Bruker (PS-LDPE-12M). Due to the different
elastic moduli of the PS and LPDE regions, the sample is used
for evaluating imaging methods that are sensitive to elasticity.

Higher-harmonic amplitude images were obtained by the lock-
in amplifier and Lyapunov filter on the second harmonic. Each
demodulator was configured to track 313.50 kHz. In addition,
the Lyapunov filter contained a channel modeling the funda-
mental resonance frequency. Although the cantilever is actively
driven at its fundamental resonance frequency, during imaging
its deflection signal contains additional frequency components.
These include higher harmonics and intermodulation products
excited by non-linear tip–sample forces during contact.

Second-harmonic amplitude images captured by both demodu-
lators at low (1 kHz) and high (60 kHz) tracking bandwidths are
shown in Figure 10. At low bandwidths, the lock-in amplifier
(Figure 10e) and the Lyapunov filter (Figure 10c) perform
comparably as demonstrated in a previous work [36]. However,
at high bandwidths the lock-in amplifier image has large arti-
facts when compared to the Lyapunov filter. This is due to the
different OMR achieved by each system with respect to the
fundamental resonance frequency. Through channel cross-cou-
pling, the Lyapunov filter is guaranteed to contain a zero at the
desired location of 156.75 kHz.

In contrast, the lock-in amplifier insufficiently attenuates the
fundamental resonance frequency. The PSD of the raw data
from a single scan line (Figure 10g), taken from the image in
Figure 10f, reveals that the estimate contains large intermodula-
tion products. These signal components are aliased due to the
low AFM sampling frequency (Fs = 256 Hz), resulting in the
low-frequency artifacts seen in Figure 10f.

Conclusion
This article compares the performance of traditional and
recently proposed demodulators for MF-AFM. These include
conventional open-loop methods such as the lock-in amplifier
and coherent demodulator, and closed-loop methods such as the
Kalman filter, the Lyapunov filter and the direct-design method.
The sensitivity of each demodulator to unwanted frequency
components was assessed for low and high tracking band-
widths. Additionally, higher-harmonic AFM imaging was con-
ducted for both low and high tracking bandwidths to further
compare demodulator performance.

Open-loop demodulation schemes attenuate the high-frequency
mixing component at 2fi by employing a low-pass filter. The
lock-in amplifier provides flexibility to implement a desired
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Figure 9: Experimental amplitude estimation error and power spectral density of amplitude estimation for the (a) lock-in amplifier, (b) coherent
demodulator, (c) Kalman filter, (d) Lyapunov filter and (e) direct-design method for low (1%fi) and high (50%fi) tracking bandwidths. The input signal is
described by Equation 2, where A1 = 500 mV, A2 = 100 mV, A3 = 50 mV and f1 = 50 kHz, f2 = 150 kHz and f3 = 300 kHz.
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Figure 10: Higher-harmonic amplitude AFM imaging performed with the fundamental mode of a TAP190G cantilever on a PS/LPDE polymer blend.
Images shown are the (a,b) topography in nanometers at 3 kHz, with parallel second-harmonic amplitude estimates from the (c,d) lock-in amplifier
and (e,f) Lyapunov filter at tracking bandwidths of 1 kHz and 60 kHz. The PSD (g) is shown for the raw data of a single scan line from the image in (f).

filter response and order. Conversely, the coherent demodu-
lator contains a sinc(·) envelope as it performs numerical inte-
gration over a fixed-length time window. Both demodulators
excel at low bandwidths due to steep roll-offs, while having
poor OMR at high tracking bandwidths. Although the lock-in
amplifier implementation is simpler, the coherent demodulator

sinc(·) lobes are advantageous for higher harmonic and inter-
modulation AFM.

The closed-loop Kalman filter, Lyapunov filter and direct-
design method employ internal feedback of the estimated states
to reject the mixing products. This allows them to maximize the
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Table 3: Summary of MF-AFM applications and required demodulator properties. Note: f0 is the fundamental resonance frequency and fi is the
demodulated frequency.

MF-AFM application application characteristics demodulator properties
frequency spacing number of channels tracking bandwidth off-mode rejection

intermodulation very small 40+ very low very important
(fi/f0 ≪ 1) (≪1%f0)

higher harmonic medium 10+ low important
(fi/f0 ≈ 1) (1%f0)

higher mode large 1–5 user choice less important
(fi/f0 ≫ 1) (≥1%f0)

tracking bandwidth without introducing additional noise in the
amplitude estimate [28]. An added benefit of this approach is
cross-coupling zeros occurring at modeled frequencies, which
was demonstrated to reduce estimation artifacts. The direct-
design method alleviates the limited 1st-order response of the
Kalman and Lyapunov filters. When configured to a 2nd-order
Butterworth response, it achieved an increased roll-off which
increases broadband noise suppression while still maintaining
strong OMR performance.

Table 3 is provided as a reference of MF-AFM application
characteristics and required demodulator properties. A recom-
mendation for which demodulator is most suited to three major
MF-AFM applications is given as follows:

Intermodulation AFM: This MF-AFM application tracks a
large number of closely spaced intermodulation products [16].
As each signal of interest has a frequency separation of the
order of 100 Hz, a very low bandwidth and a very strong OMR
are essential. The requirement to track up to 40+ signals is most
suited to a computationally inexpensive open-loop method. The
coherent demodulator is recommended for intermodulation
AFM, since the sinc(·) response of each channel can be config-
ured to zero other intermodulation products [58].

Higher-harmonic AFM: This MF-AFM application tracks
integer multiples of the cantilever fundamental resonance fre-
quency, resulting in frequency spacing of the order of the
fundamental resonance frequency, which ranges between 100
and 300 kHz. Since each harmonic is in the presence of a much
larger fundamental resonance frequency, a low tracking band-
width and a strong OMR is required. The open-loop lock-in
amplifier and coherent demodulator are recommended at low
tracking bandwidths. While the closed-loop Lyapunov filter and
direct-design method are recommended if a higher tracking
bandwidth is desired. This is because the closed-loop methods
have the added benefit of zeroing the large fundamental reso-
nance frequency and other harmonics.

Higher-mode AFM: This MF-AFM application tracks the
fundamental resonance frequency and higher resonance modes.
Frequency content of interest is typically separated by 500 kHz
or more, depending on the cantilever geometry. This provides
flexibility to the user to operate at either a low or high tracking
bandwidth. At low tracking bandwidths, the lock-in amplifier is
recommended, as it is of lower complexity than the coherent
demodulator, which offers little benefit for widely spaced
signals. At high tracking bandwidths, a closed-loop method is
recommended as they achieve single-cycle convergence
(f−3dB ≈ fi) with optimal noise performance. Also, each channel
has the added benefit of zeroing other resonant modes. The
Lyapunov filter and direct-design method are preferred over the
Kalman filter, as they are significantly easier to implement.
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